Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

The set Q consists of the following terms:

int(0, 0)
int(0, s(x0))
int(s(x0), 0)
int(s(x0), s(x1))
int_list(nil)
int_list(.(x0, x1))


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

INT_LIST(.(x, y)) → INT_LIST(y)
INT(s(x), s(y)) → INT(x, y)
INT(s(x), s(y)) → INT_LIST(int(x, y))
INT(0, s(y)) → INT(s(0), s(y))

The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

The set Q consists of the following terms:

int(0, 0)
int(0, s(x0))
int(s(x0), 0)
int(s(x0), s(x1))
int_list(nil)
int_list(.(x0, x1))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

INT_LIST(.(x, y)) → INT_LIST(y)
INT(s(x), s(y)) → INT(x, y)
INT(s(x), s(y)) → INT_LIST(int(x, y))
INT(0, s(y)) → INT(s(0), s(y))

The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

The set Q consists of the following terms:

int(0, 0)
int(0, s(x0))
int(s(x0), 0)
int(s(x0), s(x1))
int_list(nil)
int_list(.(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

INT_LIST(.(x, y)) → INT_LIST(y)
INT(s(x), s(y)) → INT(x, y)
INT(0, s(y)) → INT(s(0), s(y))
INT(s(x), s(y)) → INT_LIST(int(x, y))

The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

The set Q consists of the following terms:

int(0, 0)
int(0, s(x0))
int(s(x0), 0)
int(s(x0), s(x1))
int_list(nil)
int_list(.(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 1 less node.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INT_LIST(.(x, y)) → INT_LIST(y)

The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

The set Q consists of the following terms:

int(0, 0)
int(0, s(x0))
int(s(x0), 0)
int(s(x0), s(x1))
int_list(nil)
int_list(.(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


INT_LIST(.(x, y)) → INT_LIST(y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
INT_LIST(x1)  =  x1
.(x1, x2)  =  .(x2)

Lexicographic Path Order [19].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

The set Q consists of the following terms:

int(0, 0)
int(0, s(x0))
int(s(x0), 0)
int(s(x0), s(x1))
int_list(nil)
int_list(.(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

INT(s(x), s(y)) → INT(x, y)
INT(0, s(y)) → INT(s(0), s(y))

The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

The set Q consists of the following terms:

int(0, 0)
int(0, s(x0))
int(s(x0), 0)
int(s(x0), s(x1))
int_list(nil)
int_list(.(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


INT(s(x), s(y)) → INT(x, y)
The remaining pairs can at least be oriented weakly.

INT(0, s(y)) → INT(s(0), s(y))
Used ordering: Combined order from the following AFS and order.
INT(x1, x2)  =  x2
s(x1)  =  s(x1)

Lexicographic Path Order [19].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

INT(0, s(y)) → INT(s(0), s(y))

The TRS R consists of the following rules:

int(0, 0) → .(0, nil)
int(0, s(y)) → .(0, int(s(0), s(y)))
int(s(x), 0) → nil
int(s(x), s(y)) → int_list(int(x, y))
int_list(nil) → nil
int_list(.(x, y)) → .(s(x), int_list(y))

The set Q consists of the following terms:

int(0, 0)
int(0, s(x0))
int(s(x0), 0)
int(s(x0), s(x1))
int_list(nil)
int_list(.(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.